lunes, 5 de mayo de 2014

movimiento uniforme

MOVIMIENTO UNIFORME



En física, el movimiento uniformemente acelerado (MUA) es aquel movimiento en el que la aceleración que experimenta un cuerpo permanece constante (en magnitud y dirección) en el transcurso del tiempo.
  1. El movimiento rectilíneo uniformemente acelerado, en el que la trayectoria es rectilínea, que se presenta cuando la aceleración y la velocidad inicial tienen la misma dirección.
  2. El movimiento parabólico, en el que la trayectoria descrita es una parábola, que se presenta cuando la aceleración y la velocidad inicial no tienen la misma dirección.
En el movimiento circular uniforme, la aceleración tan solo es constante en módulo, pero no lo es en dirección, por ser cada instante perpendicular a la velocidad, estando dirigida hacia el centro de la trayectoria circular (aceleración centrípeta).Por ello, no puede considerársele un movimiento uniformemente acelerado, a menos que nos refiramos a su aceleración angular.


\left \{
\begin{array}{llll}
\ddot{x}=0   & \mathrm{con} \quad x(0)=0 & \mathrm{y} \quad \dot{x}(0)=v_{0,x}t\\
\ddot{y}=a_y & \mathrm{con} \quad y(0)=0 & \mathrm{e} \quad \dot{y}(0)=v_{0,y}t
\end{array}
\right .
Integrando las ecuaciones diferenciales anteriores se tienen las siguientes velocidades y desplazamientos:

\left \{
\begin{array}{lll}
\dot{x}(t)=v_{0,x}      & \Rightarrow & x(t)=v_{0,x}t \\
\dot{y}(t)=v_{0,y}+a_0t & \Rightarrow & y(t)=v_{0,y}t + \cfrac{a_0 t^2}{2}
\end{array}
\right .
Para encontrar la ecuación de la trayectoria se despeja el tiempo de la expresión para la coordenadas \scriptstyle x(t) y se substituye \scriptstyle t(x) para obtener \scriptstyle y(t(x)):
 y(x) = \frac{v_{0,y}}{v_{0,x}} + \frac{a_0}{2v_{0,x}^2}x^2
resultado que representa la ecuación de una parábola.

Movimiento bajo fuerza constante en mecánica cuántica


-\frac{\hbar^2}{2m}\left( \frac{\part^2 \psi}{\part x^2} + \frac{\part^2 \psi}{\part y^2} +
\frac{\part^2 \psi}{\part z^2} \right)- xF \psi(x,y,z) = E\psi(x,y,z)
Donde:
\hbar\, es la constante de Planck racionalizada.
m\, es la masa de la partícula.
F\, es la fuerza que se ejerce sobre la partícula.
E\, es la energía de un estado estacionario del hamiltoniano cuántico.
Para ver si es posible encontrar soluciones particulares mediante el método de separación de variables se postula la forma:
\psi(x,y,z) = \psi_l(x)\psi_t(y,z)








No hay comentarios:

Publicar un comentario